
The World Leader in High-Performance Signal Processing Solutions

VDK: Core and Basic APIs

2

Why do we need a kernel?
A simple application that has to do only one task does not
need an kernel.

It often just does the same thing over and over.
If you have more than one task, an application could be
structured in a few ways

Respond to external signals possibly exploiting a finite state
machine to control the logic
Execute each of the tasks one after the other, doing high priority
ones more often

These approaches get difficult when
You need to preserve state to control what a sub-task does
Low priority tasks execute for longish times and delay high
priority tasks

3

What does a kernel give you

A headache and sometimes a nightmare
Simplification of the preservation of state and the
development of the control flow logic
A structured way to control the relative priority of the
different sub tasks
Provides a development framework containing
implementations of common synchronization and
scheduling paradigms
Efficient and thoroughly tested switching between the
various tasks
Support in understanding how you ended up in the mess
you are in

4

What is VDK ?

VDK is a kernel not an operating system
VDK comprises:

VDK libraries
VDK specific ldf files
Include files
Template files

Overheads
Memory overhead
Minimum memory requirement is platform dependent
Footprint is one of the most important metrics for a RT kernel
MIPS overhead

5

VDK Fundamentals

Threads
User code functionality is split between threads
Each thread has it’s own stack

Accessing shared resources
Used to synchronize activity
Semaphores, events, device flags, messages etc.

Interrupts
Timer interrupt
Reschedule interrupt

6

VDK Execution Environment

After system startup, all code in a VDK application executes
in one of levels:

Thread level
Kernel level
Interrupt level

Trade-off between convenience and latency
The more functional the level, the longer it will take to respond
to an external event

7

VDK Execution Environment

After system startup, all code in a VDK application executes
in one of levels:

Thread level
Kernel level
Interrupt level

Trade-off between convenience and latency
The more functional the level, the longer it will take to respond
to an external event

Kernel Level

Lowest-priority (available) level
serviced by the “Reschedule ISR”

Raised by software, scheduled by hardware
Masked by VDK e.g. during context switch

Asynchronous wrt. Thread Level
All pre-emptive rescheduling initiated from here
C/C++ runtime environment
Limited VDK API support

Functions must be interrupt-safe
Device Driver “activate” functionality is the only user code
which executes at this level
~500 cycle latency

9

Threads

Threads are instantiations of thread types
Initial thread source and header files generated from
templates
Each thread has a unique ThreadID
Each thread has it’s own stack – allocated from the heap
Overrunning a thread stack must be avoided
Maximum stack usage can be determined
No way to warn if a memory allocation request for a boot
thread stack cannot be fulfilled

Thread Level

Threads are scheduled in software, by the VDK Kernel
Co-operative and/or pre-emptive scheduling

Runs in supervisor mode on TigerSHARC and BlackFIN
Reserves interrupt level 15 on BlackFIN

All user thread code executes at this level
Also most VDK API code

Full VDK API support
Most other API functions supported

Functions must be thread-safe
~1000 cycle latency

11

Thread level scheduling

T1 (p=1)

T2 (p=4)

T3 (p=5)

Semaphore T1 wants is posted

T1 pends on semaphore

T3 pushes unscheduled region

Semaphore T1 wants is posted

T3 pops unscheduled region

T1 pends on semaphore

T1 is pended
 on semaphore

T2 sleeps 1 tick

T2 sleeps 1 tick

Ticks

12

Thread type generated source

Each thread type has the following functions defined
An Init function (this does not execute in the new thread
context)
A Run function that does the main work of the thread (usually a
while loop)
An Error handler function that is invoked when VDK detects an
error.
A Destroy function that is invoked as the thread instance dies.

Interrupt Level

Collective term for all interrupts above Kernel level
Raised by hardware, scheduled by hardware

Masked by VDK during critical activities
Interrupt nesting supported

Interrupts must be explicitly enabled within ISR
Asynchronous wrt both Thread level and Kernel level
Written in assembly

C/C++ possible on Blackfin, with some extra work
Very limited API support

Only ISR API macros supported by VDK
Any other functions called must be interrupt-safe

~100 cycle latency

14

Interrupts

Source file for a user defined ISR generated from a template
Any registers used by an ISR must be saved and restored
first
ISRs can be written in C, C++ or assembly (VDSP++ 4.0
onwards)
Threads or device drivers can be triggered to allow use of
high level code
Interrupt masks should be accessed by VDK API calls
ISR macros provided to:

Activate a device
Post a semaphore
Set/Clear an event bit

15

Managing Tasks in VDK

16

Scheduling

Every thread has a priority level associated with it
At any one time at most a single thread can be running
Highest priority thread with all resource requirements
fulfilled is the running thread
If no user thread can run, the Idle thread is executed
Scheduling the required thread can be effected by:

Using priorities
Resource requirements
Cooperation
Periodicity

17

Context Switching

Reschedule ISR takes care of stopping the execution of one
thread and starting the execution of another
This context switch requires all appropriate registers to be
saved/restored
Speed of context switching is one of the most important
metrics for a kernel

18

How to stop a thread from being
switched out?

Unscheduled regions
Cannot change the running thread
Protects access of global variables
Allows multiple resource manipulations

Critical regions
All interrupts are masked out
Protects access of global variables by ISRs
Interrupt latency is one of the most important metrics of a kernel

19

VDK Error handling

Errors or problems detected within an API function are not
reported directly to the caller of the function
Any errors are passed to the thread’s error function
The error handler can resolve some errors and return to the
application normally
Most errors cannot be recovered from however.
The default error handler action is to terminate the thread.
In style it is similar in structure to C++ exception handling.

20

Inter-process communication

Semaphores

All semaphores are “counting” in VDK 3.5
Use max. count of 1 for binary behaviour

Interrupt level -> Thread level signaling
e.g. I/O completion
Counting behaviour can record multiple occurrences

Thread -> Thread signaling
Mutual exclusion

But unscheduled regions may be more efficient
Resource counting

e.g. in parallel with a memory pool
Can now be used from Kernel level

Restriction removed in 3.5

22

Messages

Signals to synchronize thread activity
Transfer information between threads
Messages can be sent over a fixed number of channels
Each channel is a FIFO
Messages are received from channels in priority order
Can pend on messages in a configurable manner

23

Messaging

Thread -> Thread signaling (and data-transfer) only
Provides a multi-wait capability

Channel priorities are only relevant when waiting on more than
one channel

Scheduling driven by data flow
Messages can be forwarded or returned to sender

Recycling of messages and/or payloads may be more efficient
than destruction
Returned messages can provide flow control

“Ownership” of messages and payloads is important
Payload management will be key to inter-processor
messaging in future VDK

Message Payloads

Each message carries three 32-bit items of information
Type is an integer, but is normally treated as an enumeration
Size is an unsigned integer
Addr (address) is a void *

These attributes collectively define the message’s payload
Meaning of Size and Addr is programmer’s choice

Interpretation is fixed for each valid value of Type
Payload can be carried:

Internally - in the 2x32 bits provided by Size and Addr
Externally - in a data structure referenced by them

VDK makes no interpretation of any part of the message
payload

25

Memory Pools

Provides a block-based memory allocator
Increased efficiency due to fixed size of blocks in each
memory pool
Prevents fragmentation
Multiple pools can be defined with different block sizes
Block construction at pool create or when used
Messaging uses a memory pool

26

Events and Event bits

Signals used to synchronize thread activity
Allow specification of multiple conditions
Each event can be dependent on a user specified number of
event bits
Restriction on the number of events and event bits in a
system
Less efficient than semaphores
When event is true then all threads pending on the event are
unblocked

The World Leader in High-Performance Signal Processing Solutions

VDK Device Drivers

28

What is a device driver?

Role of a device driver:

“abstract the details of the hardware implementation from the
software designer” –VDK manual VisualDSP++ 3.5

Note: In VisualDSP++ 3.5, device drivers are a part of the I/O
interface. Device drivers are added to a VDK project as I/O objects.
VisualDSP++ 2.0 device drivers are not compatible with
VisualDSP++ 3.5 device drivers. See "Migrating Device Drivers" for a
description of how to convert existing VisualDSP++ 2.0 device
drivers for use in VisualDSP++ 3.5 projects.

29

Device Driver: Dispatch function

Only one interface to a device driver is through a dispatch
function

Dispatch function is called when the device is initialized,
when a thread uses a device (open/close, read/write,
control), or when an interrupt service routine transfers data
to or from the device

30

I/O Interface and Device Drivers

Device drivers are analogous to thread types
A Boot I/O object is required to instantiate a device driver
Dispatch function services:

Initialisation
Activation
Open
Close
SyncRead
SyncWrite
IOCtl

Only these 5
functions are

available from the
point of view of the

thread

31

Device Flags

32

Device Flags

Signals used to trigger thread activity
Can be posted from ISRs
Threads always block on device flags
All blocked threads are released
Always created dynamically (in the device driver Init function
for example) using CreateDeviceFlag

DeviceDrivers and DeviceFlags

Driver activation:
No counting behaviour

Each driver can only occur once on activation queue
Interrupt Level -> Kernel Level signaling only

DeviceFlags:
No counting behaviour

All pending threads released by post
A device flag self-resets on post

Kernel Level -> Thread Level signaling only
PushCriticalRegion() -> PendDeviceFlag() sequence is key to
robust operation

Freeze state before deciding to block

34

Device Flags

Signals used to trigger thread activity
Can be posted from ISRs
Threads always block on device flags
All blocked threads are released
Always created dynamically (in the device driver Init function
for example) using CreateDeviceFlag

35

Working with VDK

36

Creating a Project

VDK support is added from the beginning
A project must be structured/restructured to use VDK
The IDDE generates 3 files for any VDK project:

The .vdk file stores the information entered into the kernel pane
of the Project window
The vdk.cpp and vdk.h files contain the variable declarations
and enumerations corresponding to the defined project

All the various items are mapped to standard global
variables and enums where the name is based on the user
supplied name

Each thread type (such as Input) is mapped to an enum name
such as kInput which acts as the thread identifier.

37

Generated files

From information in the kernel tab the IDDE generates
Vdk.h and vdk.cpp which declares and defines the types and
variables for items such as semaphores, messages etc
Vdk.h and vdk.cpp are updated when the kernel tab is updated
Vdk.h and vdk.cpp should not be updated directly

Source files based on templates for
each thread type
each device driver
each interrupt that is defined
source file are not generated if a file of the same name already
exists

38

The System Node

Clock Frequency and Tick Period define number of cycles
between VDK Ticks
Each VDK Tick marked by a timer interrupt
At least one timer interrupt reserved by VDK on each
processor
All time based services updated by the VDK Timer ISR
Instrumentation Level defines level of debug support
Full Instrumentation allows the use of the VDK State History
window and provides Error Checking
Error Checking provides additional sanity checks
Instrumentation drastically increases code size
History Buffer is wraparound, 4 words per entry

39

The System Node

40

API function names

In C++ all of the VDK types and functions are defined within
the VDK namespace
In C++ an API function such as PopCriticalRegion is referred
to as VDK::PopCriticalRegion
In C the names are prefixed by VDK_
In C PopCriticalRegion is referred to as
VDK_PopCriticalRegion

41

The ISR API

Principally consists of these assembly macros (plus
variations):

VDK_ISR_POST_SEMAPHORE_()
VDK_ISR_SET_EVENTBIT_()
VDK_ISR_CLEAR_EVENTBIT_()
VDK_ISR_ACTIVATE_DEVICE_()

Only means of communication between an interrupt service
routine and the VDK kernel.
Mainly just change a small amount of internal state and raise
the Reschedule interrupt. The Reschedule ISR may in turn:

action device activations
unblock waiting threads
perform a pre-emptive context switch

42

Debug assistance

VDK status window
State of each object
The current active thread
Which threads are waiting on what
Are threads waiting or ready to run

VDK History window
Display the last set of events which have occurred
Helps to understand how you got where you are

43

VDK Status window

44

VDK History window

45

VDK Core and Basic API Summary

Provides a comprehensive set of services
Is very efficient and at least as good as its competitors
Provides the same functionality on the four families of
processors
Well integrated with the IDDE

